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ON THE APPLICATION OF THE THEORY OF MARKOV PROCESSES TO

EVALUATION OF STATE OF DYNAMIC SYSTEMS AND TO

CONTROL OF AIRCRAFT OSCILLATIONS

V. T. Tarushkin

The application of the theory of Markov processes and sto- /150

chastic differential equations to the evaluation of state of line-

ar dynamic systems and to control of small oscillations of an air-

craft in circular orbit is discussed.

1. Some Notions of the Theory of Stochastic

Differential Equations

Given that xt is an n-dimensional Markov process satisfying

a system of stochastic differential equations in the Ito form [1],

i.e.,

dx,=f(x,, t) dt+ , (x,, t) a ' (t).
(1.1)

Here, f(xt , t) is an n-dimensional vector of transposition, o(xt,t)/151

is a diffusion matrix of dimensionality n X m, w(t) is an m-dimen-

sional process of Brownian movement with independent components and

unique dispersion parameter. Equation (1.1) is equivalent to the

integral equation

xt=xo+ ff(x,, )da+ fa(x,, i)dw(t).

(1.2)

The last integral in (1.2) is stochastic and is defined as the

limit in the average quadratic of integral sums, i.e.,

tN ( . 3)
f a (xt, t) dw=l. i. m. o (x,,, tl).[w (t,+)-w (t,)],

t 0 i=1 1



where T = max (ti = t ).i i+l

By analogy to (1.1), we can define the stochastic differen-

tial equation in the Stratonovich form [2], i.e.,

d*xt=f(xt, t) dt+a (xt , t) d*w.
(1.4)

Equation (1.4) is equivalent to the equation

t t

xt=xo+ jf (x,, ,) d + a(x,, r)d-w. (1.5)

The last integral in (1.5) is balanced stochastic integral and is

defined as the limit in the average quadratic of the integral sums

of the following form:

S (xt, t) d*w = . i. . t [ (+- (t)].
(1.6)

Let us note that if a(xt, t) is not a function of xt , definitions

for both integrals coincide. Below, this case will be examined.

The ordinarily examined dynamic system are characterized by

the fact that their trajectories virtually everywhere are dif-

ferentiable. The process of Brownian movement, used in equations

(1.1)-(1.4) is not differentiable in the ordinary sense [3]. This

circumstance proves that we should, in a certain sense, define a

generalized derivative of the process of Brownian movement if we

want to have a convenient mathematical apparatus. The case of in-

differentiability of the probability density is usually eliminated

by introducing generalized 6-functions of Dirac [4]. Below we will

define the derivative v of the process of Brownian movement as a

generalized Gaussian m-dimensional random process of the type of

white noise, having a zero average
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Ev = 0 (1.7)/152

and a covariation matrix

Ev (t) v (s)=R (t) t-s). (1.8)

Here, the exponent "t" denotes transposition, while R is the mat-

rix of dimensionality m X m.

Let us introduce the process

f a (, ) d w  ( ).  i (1.9)

Similarly, for s > t we will define that

v(S)= O(tf IZi (S).

In virtue of the fact that increase in Brownian movement have a

zero average, we find that

Ev (t)=Ev (s)= 0. (1.10)

We will further find that

S()()= ( )()' d (1.11)

E (t) (s)'=0. (1.12)

To prove equation (1.10), we only have to apply the defini-

tion of the stochastic integral to (1.9) and notes that for each

partial sum
N
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To prove (1.11), we only have to apply the definition of the

stochastic integral and write the product of partial sums

N, Af

ESA'SA! = (n) E {w (%+))-w (ti) x

= x (: r~) o ()r ((-, -a).
i=1

The latter relationship takes place because dispersions of increases

in Brownian movement are equal to the differences between the

initial and final moments in time, while increases for noninter-

secting intervals of time are independent.

By analogy equation (1.12) is proven, but in this case we

should note that all intervals of division for partial sums are

nonintersecting.

Let us introduce the derivative v with the aid of an equa-

tion similar to (1.9), i.e.,

t t

Sa(-)dw(c) V d,. (1.13)
to to

The properties of (1.7)-(1.8), which this derivative possesses, are

simply a convenient form of writing relations (1.10)-(1.12) using

generalized functions.

Thus, we will finally define the stochastic differential

equation in the form

dxt
at -f (xt, t)+v.(1.14)

(1.14)

Equation (1.14) is equivalent to the integral equation

4



t t

xt=xo + Sf (x,, d, + S v d,.
to (1.15)

The last integral in (1.15) is an analog of the stochastic inte-

gral and is defined by equation (1.13) using the introduced function

v, which has the sense of a generalized derivative of the process

of Brownian movement.

Equations (1.10)-(1.12), with the aid of function v, will

be written as

E Svd=Et vdr=, (1.16)

I I U to (1.17)

E v (t) dr fv (p)dp = 0
(1.18)

These relations are proven using 6-functions, whereas relations

(1.10)-(1.12) are proven using Ito-Stratonovich integrals. From

(1.17) it follows that

(1.19)

Let us note that (t) and (s) are defined above as values of

the integral (1.9) for nonintersecting intervals of time and have

the sense of discrete values of the process with independent val-

ues, definable by the integral of the generalized derivative of

the process of Brownian movement. Positing that t = ti ,

ti

S=tj, v (t)=v, (ti)=V', SR d=Ri,

we find that
5



EE=0, E= (1.20)

where

1, i.

For small intervals of integration, integral (1.9) can be written /154

as

(1.21)

Here tk & [t, to]. Since for each ith component of Brownian move-

ment there takes place the inequality

Xj 2

Bep {w (t)-w(to) < x,} " ) e 2(t-t) dz, (1.22)

then (1.21) can be seen as a linear transformation of normally dis-

tributed, independent values. Accordingly, for small intervals of

integration, the discrete process defined by (1.20) belongs to the

normal law with a mathematical expectation equal to zero and co-

variation matrix R..1

2. Evaluation of State in Partially Observable

Linear Systems

Given that xt is an n-dimensional unobservable, while yt is

an m-dimensional observable of the component of a Markov random

process which satisfies a system of stochastic differential equa-

tions in the Ito-Stratonovich form:

dxt=A (J) xdt+C () d, (f), (2.1)
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dyt=H(t)xdt+G(t) dw,(t). . (2.2)

Here, A, C, H, G are matrices of dimensionalities n X n, n X p,

m X n, n Q q; w1 is p-dimensional, while w2 is q-dimensional--pro-

cess of Brownian movement having independent components and unique

dispersion parameters. For system (2.1)-(2.2), we assume the ful-

fillment of the condition of theorem 1' from [5]. Then, if the a

priori distribution for system (2.1)-(2.2) is Gaussian with the

parameters

xo=Exo, Po=E (Xo-xo) (xo-xo)T,

then the a posteriori distribution is Gaussian with the parameters

xt=E{xt/Yt), P=E {(xt-xt) (xt-xt)/Yt),

satisfying the equations

dxt=Axt dt+PHT [GGT]-'[dyt-Hx dt]. (2.3)

dP
S= AP+PA'+ CC-PHT [GO']- I HP. (2.4)

Here Yt = a {ys, 0 < s < t}-- a-algebra generated by the values of

ys for 0 < s < t. Let us note that for integration of equation

(2.4), the knowledge of realization is not required.

Let us introduce the generalized derivatives /155

dw. dw.
w -=Cd, v=G ' tdt dt

Then, instead of system (2.1)-(2.2), we will have

d = Ax,+ , . (2.5)

7



zt=Hx+v, zt dyt (2.6)
dt

Here, v and w are Gaussian processes of white noise, defined in

the preceeding section and having zero averages

Ew = Ev = 0 (2.7)

and covariation matrices

EzW (t) W (t+s)T=Q (t) (t-s),
Ev (t) v (t+s)'=R (t) 8(t-s), (2.8)

where in conformity with (1.19)

R=GG', Q=CC. (2.9)

System (2.5) is equivalent to the integral equation in the inter-

val [to, t]:
Xt=o+ Ax,d+wd.

to S . .(2.10)

Let us designate by (D(k = 1, k) = D (tk+I , tk) the fundamental

matrix of the system

dxt
dt = Axt

such that O(tk , tk+l) = I, where I is a unique matrix. Equation

(2.10) can not be written in the interval [tk' tk+l ] in the form

xk+1= (k+1l, k)x,+w,. (2.11)

Here it is designated that Xkti=x(tk+),XkX(tk), k= ldr.



The procedure of transition from equation (2.5) to equation (2.11)

will be called discretization. By selecting the intervals of dis-

cretization so that they do not intersect, we find that on the

basis of (1.20) for any [tk' tk+ ]' [ti t ti+1 ]

Ei= Ewk= O, Ewlw1=Qt&k. (2.12)

System (2.6) is equivalent to the integral equation /156

t t

t--to xt--to $ x r+ v dc. (2.13)
to to

For the interval of discretization [tk, tk+l], equation (2.13) is

written as

zA= Hkx + V.

(2.14)

Here it is designated that

tk+l

k- t+I- k +k Hx d,

V tk+l (2.15)

For any [tk, tk+ 1l]  [ti' ti+ 1 ], according to (1.20), we find that

Ev = Ev,- O, EvkV=R. k (2. 16)

We must also take into account that

9



.(+-t " ' d . (2.17)

For system (2.11)-(2.14) and discrete white noise possess-

ing properties (2.12)-(2.16), the estimation of the state by the

method of maximal probability is derived in [6]; the interrelation-

ship of different forms of estimation is discussed in [71.

Estimation of state is defined by the equations

Xk =Xklk-l +Kk (z -H Xkk-,), I

Kk =PhklH (HkPIk-1,Hk+R - 1  (2.18)
Pkk P k-1-KkHkPhk,-1*

Here it is designated that

xk-,,k- =E(x-1/YX-), Xk1_, =E(xhIY-_,),

Xk--l1k-- =XI -Xk-- k--l Xekt-il=Xi- Xklkl,

Pklk--I =EXklk-lXIrk-l ,

Yk-, =1z] ... , zk-,}.

In addition to the form of (2.18), estimation of state can be

written as

Xk T Xk,k- +K, (zk-H,x, * 1 ),
K,= Pk. .PR i',

P1T= , - t RI ,. (2.19)

We will show that the estimation derived by (2.18), (2.19) is

10



unbiased, if the zero approximation is unbiased. In virtue of the /157

fact that

Xklk-lI=(k, k- 1)Xkh1k-_, Ezk=HkExk,

we find from (2.18), (2.19), taking the mathematical expectation,

that

- E-u'la'il, (, -I .v _~-Y-jk--l lH(,l) (k, k--) [Ex-- EX _--1k.

Hence in virtue of the fact that

Ex=Q (k, k --1)Ex, _, E(xo--Xo)=O,

by the method of mathematical induction we find the absence of

bias of estimate of

E(xh-xk)=O.

In [6] it is shown that as the interval of discretization

approaches zero, we find for the discrete form of estimates their

continuous analog

t =Ax,+K[z-Hx,,

K=PHTR-1, 1 (2.20)

dP

- -=AP+PA'--PI'R-IHP+Q. (2.21)

We will show that relationship (2.20)-(2.21) is a generalized

form of equations (2.3)-(2.4); we will likewise examine those cir-

cumstances at which the solution of (2.3)-(2.4) is itself a Markov

diffusion process.

11



Let us introduce the process

d=dyt-Hx, d. (2.22)

Integrating (2.22) with allowance for (2.2), we find that

, =, + ,H[x 1-- x,]dt+ Gdw.,. (2.23)
jI

By virtue of the properties of the stochastic integral [1], we

find that

E LGd d ;YI=0.

(2.24)

Hence, by applying the operation of arbitrary mathematical ex-

pectation to (2.22), we will find that

E J~,;=, "-- HE, (x--xzYe:, jd. (2. 25)

Since Ytl ( Yt for t { [tl' t2] and with a probability of 1, by /158

virtue of the properties of reiterated arbitrary probabilities [3],

we find that

E (- x,-xt).Yt, =E E '(x,--x,)Y,Y, ,

then from (2.25) we find that E {(t2/Ytl} = Etl' i.e., the pro-

cess Et is a martingal. Consequently, the circumstances of theo-

rem 5.3 [3] (page 403) define the conditions at which the follow-

ing equation takes place

(i, d (,(2.26)

where u(t) is a process of Brownian movement, while 4(yt, t) is

some matrix.

12



The conditions of the theorem require that the following takes

place with a probability of 1

E [tt, -- t 1[ t,-ET]Yt, )E 2( Y,. t)dt/Y 1, (2.27)
------------------- ---------.____

Relationship (2.27) signifies that the process t must be a

D-martingal as well [8]; consequently, it follows that the pro-

cess Et itself is analogous to the process of Brownian movement

in its use for constructing a stochastic integral. This yields

a second method of constructing the theory which differs from the

use of theorem 5.3 [3]. For small intervals [tl, t2], we will cal-

culate the left side of relationship (2.27). We find that

S- iH xt dt + V dw21
4 t

[ , d [xt-tL. dtodw2 ±

It is easy to see that the first term in (2.28) is a quan-

tity of the second order of smallness for small [t:- t2• .I

property of the stochastic integral, analogous to (2.24).

t, I r ,.

. [x.-x,l dt .L " L,

It is easy to see that the first term in (2.28) is a quan-

tity of the second order of smallness for small [tl, t2] . If

we apply the operation of arbitrary mathematical expectation, then

the second and third terms will also be zeroes by virtue of the /159

property of the stochastic integral, analogous to (2.24).

Therefore, we find that

13



G " ,od J , . j/tJ . (2.29)

By virtue of the properties of the stochastic integral [1]

~: .G;E{[ ] [T / Y:1 }~=IOG dt..' (2.30)

From (2.29)-(2.30) it follows that = [GGT]1 /2 is also a deter-

minate function in this case. Thus, equation (2.3) can be writ-

ten in the following forms:

dxt,- Axdt+PHT [GGO] - ,' du, (2.31)

dx,=Ax,dt+PH GGT-' db. - (2.32)

Equation (2.31) corresponds to the Ito-Stratonovich equation for

a diffused Markov process, while equation (2.32) is also stochas-

tic, but the differential is taken in terms of a martingal. Both

equations will be equivalent to each other if the matrix GGT is

positively defined. Since the generalized derivative of the pro-

cess of Brownian movement is defined, then in accordance with

(2.26) the generalized derivative of the D-martingal t will be

defined, while from (2.22) we find that

dt d, .
--- -- Hxt=zt-Hxt.

Thus, equation (2.20) should be seen as a stochastic dif-

ferential equation which contains a generalized differential of the

14



martingal.

Let us investigate the basis of the limiting process from

(2.18)-(2.19) to (2.20)-(2.21) in the interval [to, t] which in

the process of discretization was broken into partial intervals

[tk' tk+l]. For each [tk, tk+l] ( [to, tl] we find that

E (xCiklyk-1)= E (X.R,k-IlYk-1) +

+ K, [HkE (xY,_,)-HkE (xh,,, /Yl) I + E (vh/Y,_-).

(2.33)

Since interference vk = zk - Hkxk is not a function of Yk-l = {Zl'

..., Zk-1} , then E {vk/Yk_} = Evk = 0, due to the fact that

E {xk/Yk } = Xk/k_1 and with a probability of 1 E k/k-1/Yk- l =

SCk/kl, if E k/ } < , then with a probability of 1

H*E(x,;Y,_ -H,E(x,,,_'_YI)=O.

and (2.33) acquires the form /160

E [xkIklYk-1) X . (2.34)

Let us introduce the rank of fine subdivision X = mx (tk+l

- tk). Since lim k/k- = Xk-1/k-l' then in the limit we find

that

E I ,,,lY,,_, I=x _,,,_, .... _

i.e., the sequence {fk/k' Yk, k = 1,2,...} is a martingal; then,

in conformity with theorem 4.1 [3](p. 287), if kim E {Ik/kl} <
< 0 , then with a probability of 1 exists 1 m-xk/k

15



3. Construction of an Estimate Using

Stationary Linear Systems

Given in the interval [to, t1 ] we must numerically find a

solution of equations (2.1)-(2.2) which satisfies the initial con-

ditions

xo=xt it=t,, Po=P(to).

Let us subdivide this interval into points of subdivision

to=-o<:,< ... < ,

In each interval of subdivision (TN, TN+l ) , let us select the

points <tN<tI< ... <t<

Let us introduce

z (tl) H (t)v (t)

Sz (t) H(tN) (t) (3.1)

and form the system

ZN=HxN+Vv (N=0, 1 .... n-1). (3.2)

Here, by virtue of the fact that

16Ev (t)=v () 0, Ev (t) ),

16



in the unified system (3.2) will appear

Evv= Evz =O, EVN VI=RNa , (3.3)

where
RN 0 . . . o
0o RN . .. o

By definition, the system is called stationary if its state /161
in each interval of subdivision does not change, i.e.,

xu=x(t)=X (t)= ... =x(t"). (3.4)

By virtue of (3.4), discretization of equation (2.10) can be ful-
filled at each [TN, TN+1] and, instead of system (2.11), we derive

the system

xv+1=l (N+ 1, N) Xv + w, (3.5)

where as before we find that

EWN--EwMO, EWNW =QNNM- (3.6)

Here is designated that

xN+=x (t), tE [TeN+, N+2],
XN X(t), .tG[_', CN+1],1

D(N+1, N)=D(t, ), tE [N+1, 'CN+2], I

Therefore, the discrete system (3.2)-(3.3), (3.5)-(3.6) co-

incides in form with system (2.11)-(2.12), (2.14)-(2.16); the esti-

mates (2.18), (2.19) are valid for it only with the substitution of

the exponent N for the exponent k.
17



4. The Control of Small Oscillations of an

Aircraft in a Circular Orbit

In conformity with [9-10], let us examine the problem of

control of small forced oscillations of a device in circular or-

bit in the central field, in the presence of measurements of one

reference vector. Motion is examined in terms of an orbital sys-

tem of coordinates x0Y0Z0 (x0--in direction of positive trans-

versal; z0--in direction of radius-vector; yo forms a directed

trihedral with the first two). The system of coordinates xyz is

rigidly attached to the body. For any moment in time we find the

following relation:

H. ar a, H
HY = a a22 o + .

H \ a3 a2 (H, (4.1)

Here aij are transformation matrix elements which are expressed

in some manner by the angles of of pitch , yaw , and bank ;

(Hx, Hy, Hz)are projections of the reference vector in a connected

system measurable by sensor; (Hx0, Hy0 , Hz0) are projections of the

reference vector in an orbital system known from theoretical for-

mulas; v = {vx, vy, vz} --the vector of additive interference of /162

the white noise type, having a zero average and covariation mat-

rix

Eu(t) V (s)'=R (t) (t-s).

In addition to the matrix R, we will use the matrix G connected

to R by the equation R = GG ~. Relation (4.1), in the absence of

interference, is an ordinary transformation of coordinates. For

forced oscillations, pitch, bank and yaw are predicted in the form

of fragments of the Fourier series:

18



=dj+d2 sin wt+d 3 cos wi+d 4 sin 2wt+d 5 cos 2wt,
O=d 6+d 7 sin wt+d 8 cos ot+d sin 2wt+dlo cos 2wt,
y =d ,+dl 2 sin ot+d 3 cos wtt+ 14 sin 2ot+d 5 cos 2wt,

where w = const is a known frequency.

The estimation of state is effected in the interval [t0 , tl] '

which is broken by subdivision points into intervals [TN, TN+l] for
N ON N ON

each of which is assumed dk = dk + xk . Herek is the zero
N

approximation, while xk is a small correction. Let us introduce

the vectors

xN=(x" ... , x "', d={d, ., d15}',
do= {d0, .... d5} .

In each [TN, TN+ 1 ] we find that

dxN
dN =0. (4.2)

Equation (4.2) corresponds to (2.1), but since the state does not

change, we have the case examined in the preceeding section.

Without making any assumptions on the interrelationship

of estimates in each of the subdivision intervals, we will find

by analogy in [TN+I TN+ 2 ] that

dXN+

d= 0 (4.3)

Thus, equation (3.5) has the form

XN+IXN. t (4.4)

19



Let us introduce the vector of discrepancies n = {n , ny, n
with the aid of the relationship

H. _ 1(a, a1 2  a13)

Y = H - a21 a22 a)23 ) . (4 5)t lH, a3 aa32 a3 (H.

It is not difficult to see that n= n(t,d). By performing

a linearization of discrepancies (4.5) in the neighborhood of the

zero approximation do , we will find that

z=HxN+v.
(4.6)

It is designated in equation (4.6) that /163

z= (t, do), H- d (t, do)
od,

N
By performing discretization of system (4.6) for each to,...,

t q we will find that

z (to) =H (tN) xN+v (tN),

z (t)=N(t^) XN+V (tN). (4. 7)

By unifying systems (4.7), we find the analog of system (3.2)

ZN=HNXN +,. i (4.8)

For system (4.8), relations (2.18) have the form

XN=xN-1 +KN (ZN-HNXN-),

KN =PNH [HNPNHXk+RN]- x,

PN= PN--KNHNPN-I,
(4.9)

20



and relations (2.19) will accordingly be

XN =XN-I+KN (ZN-HNXN-1), (4.10)

KN=PNHA)R',

N =p - +HkR'HN.P V jN 
(4.11)

If in formula (4.10) we ignore the a priori information, i.e.,
-1posit x0 = 0, P0 = 0, then we will find an estimate of the type

of least squares at the first step

xj= [HIR-11 ]THTR-1zZ.
(4.12)

Relation (4.11) will be written now in the form

N

P= I H1_R.1H, (4.13)
k=I

We will yield from (4.10)

XN = (I-KNHN) XN-1 +PIHIRNZN. (4.14)

-1
By virtue of (4.9), PNP N = I - KNHN , hence (4.14) will be writ-

ten in the form

XN=PN [IPNLIXN-i+HkRNZN] . (4.15)

-1
By multiplying (4.15) on the left by PN , we yield

P~'XN=P--IXN-1 +I-NRNZN. (4.16)

Since it follows from (4.12) that

P,'x, =HITR'zl,
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then it follows from (4.16) that /164

N-1

PRLx- = 1 MPkRi-1,
k=l

and then (4.15), allowing for (4.13), will be written as

-[k=l k=1 (4.17)

The latter relation shows that in the case in point, fil-

tration formulas in the calculating relation represent a multiple

application of estimates of the method of least squares type.

Let us consider the continuous estimate of state for one

and the same zero approximation dO for [t01 tl].

Relations (2.20)-(2.21) will be written here as

dx = K[z,-Hx,I,

dK=PH'R-', (4.18)
at = PHR-IHP.

By virtue of (2.31) we find that

dxt=PHT [GG']-1/2 du. (4.19)

It follows from (4.19) that the estimate of state is a process

with independent increments, having a zero average and covaria-

tion matrix

E {dx, dx;} = PH--'HP d. i
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Thus (4.19) yields the qualitative characteristics of

trajectories of system (4.18).
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